Improving Rebar Twist Prediction Exploiting Unified-Channel Attention-Based Image Restoration and Regression Techniques

Author:

Park Jong-Chan1ORCID,Kim Gun-Woo2ORCID

Affiliation:

1. Department of AI Convergence Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea

2. Department of Computer Science and Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

Recent research has made significant progress in automated unmanned systems utilizing Artificial Intelligence (AI)-based image processing to optimize the rebar manufacturing process and minimize defects such as twisting during production. Despite various studies, including those employing data augmentation through Generative Adversarial Networks (GANs), the performance of rebar twist prediction has been limited due to image quality degradation caused by environmental noise, such as insufficient image quality and inconsistent lighting conditions in rebar processing environments. To address these challenges, we propose a novel approach for real-time rebar twist prediction in manufacturing processes. Our method involves restoring low-quality grayscale images to high resolution and employing an object detection model to identify and track rebar endpoints. We then apply regression analysis to the coordinates obtained from the bounding boxes to estimate the error rate of the rebar endpoint positions, thereby determining the occurrence of twisting. To achieve this, we first developed a Unified-Channel Attention (UCA) module that is robust to changes in intensity and contrast for grayscale images. The UCA can be integrated into image restoration models to more accurately detect rebar endpoint characteristics in object detection models. Furthermore, we introduce a method for predicting the future positions of rebar endpoints using various linear and non-linear regression models. The predicted positions are used to calculate the error rate in rebar endpoint locations, determined by the distance between the actual and predicted positions, which is then used to classify the presence of rebar twisting. Our experimental results demonstrate that integrating the UCA module with our image restoration model significantly improved existing models in Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) metrics. Moreover, employing regression models to predict future rebar endpoint positions enhances the F1 score for twist prediction. As a result, our approach offers a practical solution for rapid defect detection in rebar manufacturing processes.

Funder

Ministry of Education, Science and Technology

Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3