Integral operators determined by quasielliptic equations. I

Author:

Demidenko G. V.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference26 articles.

1. S. V. Uspenskiî, ?On representation of functions defined by a certain class of hypoelliptic operators,? Trudy Mat. Inst. Steklov.,117, 292?299 (1972).

2. S. V. Uspenskiî, ?On differential properties at infinity of solutions to a certain class of pseudodifferential equations,? I: Sibirsk. Mat. Zh.,13, No. 3, 665?678 (1972); II: Sibirsk. Mat. Zh.,13, No. 4, 903?909 (1972).

3. S. V. Uspenskiî and B. N. Chistyakov, ?On exit to a polynomial of solutions to a certain class of pseudodifferential equations as |x|??,? in: The Theory of Cubature Formulas and Applications of Functional Analysis to Equations of Mathematical Physics [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, No. 1, 1979, pp. 119?135.

4. P. S. Filatov, ?Uniform estimates at infinity for solutions to a certain class of quasielliptic equations,? in: Partial Differential Equations [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, No. 2, 1979, pp. 124?136.

5. G. A. Shrnyrëv, ?On exit to a polynomial of solutions to a certain class of equations of quasielliptic type as |x|??,? in: Embedding Theorems and Their Applications to Problems of Mathematical Physics [in Russian], Inst. Mat. (Novosibirsk), Novosibirsk, No. 1, 1983, pp. 134?147.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Davies’ method for heat-kernel estimates: An extension to the semi-elliptic setting;Transactions of the American Mathematical Society;2020-01-23

2. Multianisotropic Integral Operators Defined by Regular Equations;Siberian Mathematical Journal;2019-05

3. Positive-Homogeneous Operators, Heat Kernel Estimates and the Legendre-Fenchel Transform;Stochastic Analysis and Related Topics;2017

4. Mapping properties of quasielliptic operators and applications;International Journal of Dynamical Systems and Differential Equations;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3