Davies’ method for heat-kernel estimates: An extension to the semi-elliptic setting

Author:

Randles Evan,Saloff-Coste Laurent

Abstract

We consider a class of constant-coefficient partial differential operators on a finite-dimensional real vector space which exhibit a natural dilation invariance. Typically, these operators are anisotropic, allowing for different degrees in different directions. The “heat” kernels associated to these so-called positive-homogeneous operators are seen to arise naturally as the limits of convolution powers of complex-valued measures, just as the classical heat kernel appears in the central limit theorem. Building on the functional-analytic approach developed by E. B. Davies for higher-order uniformly elliptic operators with measurable coefficients, we formulate a general theory for (anisotropic) self-adjoint variable-coefficient operators, each comparable to a positive-homogeneous operator, and study their associated heat kernels. Specifically, under three abstract hypotheses, we show that the heat kernels satisfy off-diagonal (Gaussian-type) estimates involving the Legendre-Fenchel transform of the operator’s principle symbol. Our results extend those of E. B. Davies and G. Barbatis and partially extend results of A. F. M. ter Elst and D. Robinson.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. Heat kernels of second order complex elliptic operators and applications;Auscher, Pascal;J. Funct. Anal.,1998

2. Sharp bounds on heat kernels of higher order uniformly elliptic operators;Barbatis, G.;J. Operator Theory,1996

3. Generalized Gaussian estimates and the Legendre transform;Blunck, S.;J. Operator Theory,2005

4. The asymptotic distribution of eigenfunctions and eigenvalues for semi-elliptic differential operators;Browder, Felix E.;Proc. Nat. Acad. Sci. U.S.A.,1957

5. Ultracontractivity and Nash type inequalities;Coulhon, Thierry;J. Funct. Anal.,1996

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3