Composites based on graphite oxide and zirconium phthalocyanines with aromatic amino acids as photoactive materials

Author:

Gerasymchuk YuriyORCID,Tahershamsi Leili,Tomala Robert,Wedzynska Anna,Chernii Viktor,Tretyakova Iryna,Korona-Glowniak Izabela,Rajtar Barbara,Malm Anna,Piatek Dominika,Lukowiak Anna

Abstract

AbstractThis article is a part of a scientific project focused on obtaining a new type of composite materials that are characterized by singlet oxygen generation upon irradiation with red light, which can be used as antibacterial agents. The composite material is nanoscale graphite oxide (GO) particles covalently bonded to an axially substituted zirconium phthalocyanine complex. For this purpose, two phthalocyanine zirconium complexes, axially mono-substituted with 4-aminosalicylic or 4-aminophthalic acids, were prepared and measured in terms of structure, morphology, and spectroscopic properties. The zirconium phthalocyanines are photosensitizers, and the axial ligands are bridging links connecting the complexes to the GO carrier (due to their terminal amino groups and carboxyl groups, respectively). The axial ligand in zirconium phthalocyanine complexes has a strong influence on the stability and optical properties of composite materials and, consequently, on reactive oxygen species (ROS) generation. In this paper, the effect of composite components (4-aminophthalato or 4-aminosalicylato substituted zirconium phthalocyanine complex as a photosensitizer and graphite oxide as a carrier and modulator of the action of active components) on ROS generation for potential antibacterial use is discussed.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3