Liquid “Syngas” Based on Supercritical Water and Graphite Oxide/TiO2 Composite as Catalyst for CO2 to Organic Conversion

Author:

Gerasymchuk Y.ORCID,Wędzyńska A.,Stręk W.

Abstract

AbstractThe conversion of carbon monoxide into organic substances is one of the top topics of modern science due to the development of industry and the climate changes caused by it on the one hand, and the possibility of obtaining an economic effect on the other, as it could allow for partial recovery of fuels. A problem in this regard has always been the low solubility of CO2 in water, which eliminated the possibility of easy converting carbon dioxide into the liquid. The development of research on water critical states revealed the fact that water in a subcritical state has a much higher ability to dissolve gases. And this effect was used to obtain the "liquid synthesis gas" model presented in this paper. Equally important was the selection of an appropriate catalyst that would increase the efficiency of the conversion process by generating hydrogen in the system under the influence of cold plasma. In this work we present the studies of transformation of CO2 dissolved in supercritical water using partially reduced graphite oxide—nanometric titania composite (RGO-TiO2) as catalyst, due to the ability of RGO to generate hydrogen in the water environment (water splitting) under the influence of various physical factors, especially cold plasma. The RGO catalyst was stabilized with titanium oxide to obtain higher activity at lower RGO concentrations in the system. Therefore, research on conversions was preceded by a thorough analysis of CO2 solubility in supercritical water, as well as an analysis of the structural, morphological, and spectroscopic properties of the catalyst. Graphic Abstract General scheme of cold plasma reactor.

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3