An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
http://link.springer.com/content/pdf/10.1007/s11707-012-0346-7.pdf
Reference43 articles.
1. Irrigation Drainage Paper;R. G. Allen,1998
2. Allen R G, Tasumi M, Morse A, Trezza R, Wright J L, Bastiaanssen W, Kramber W, Lorite I, Robison C W (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—applications. J Irrig Drain Eng, 133(4): 395–406
3. Bastiaanssen WG, Noordman M, Pelgrum E J M, Davids G, Thoreson B P, Allen R G (2005). SEBAL model with remotely sensed data to improve water resources management under actual field conditions. J Irrig Drain Eng, 131(1): 85–93
4. Chen J, Kyaw T P U, Ustin S L, Suchanek T H, Bond B J, Brosofske K D, Falk M (2004). Net ecosystem exchanges of carbon, water, and energy in young and old-growth Douglas-Fir forests. Ecosystems (N. Y.), 7(5): 534–544
5. Cleugh H, Leuning A, Mu Q, Running S W (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ, 106(3): 285–304
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Are raw satellite bands and machine learning all you need to retrieve actual evapotranspiration?;E3S Web of Conferences;2024
2. Estimation of Reference Evapotranspiration in Semi-Arid Region with Limited Climatic Inputs Using Metaheuristic Regression Methods;Water;2023-09-30
3. A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data;Agricultural Water Management;2023-06
4. Predicting reference evapotranspiration in semi-arid-region by regression- based machine learning methods using limited climatic inputs;2023-03-09
5. Investigating the roles of different extracted parameters from satellite images in improving the accuracy of daily reference evapotranspiration estimation;Applied Water Science;2023-01-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3