The RTM harmonic correction revisited

Author:

Klees R.ORCID,Seitz K.,Slobbe D. C.

Abstract

AbstractIn this paper, we derive improved expressions for the harmonic correction to gravity and, for the first time, expressions for the harmonic correction to potential and height anomaly. They need to be applied at stations buried inside the masses to transform internal values into harmonically downward continued values, which are then input to local quasi-geoid modelling using least-squares collocation or least-squares techniques in combination with the remove-compute-restore approach. Harmonic corrections to potential and height anomaly were assumed to be negligible so far resulting in yet unknown quasi-geoid model errors. The improved expressions for the harmonic correction to gravity, and the new expressions for the harmonic correction to potential and height anomaly are used to quantify the approximation errors of the commonly used harmonic correction to gravity and to quantify the magnitude of the harmonic correction to potential and height anomaly. This is done for two test areas with different topographic regimes. One comprises parts of Norway and the North Atlantic where the presence of deep, long, and narrow fjords suggest extreme values for the harmonic correction to potential and height anomaly and corresponding large errors of the commonly used approximation of the harmonic correction to gravity. The other one is located in the Auvergne test area with a moderate topography comprising both flat and hilly areas and therefore may be representative for many areas around the world. For both test areas, two RTM surfaces with different smoothness are computed simulating the use of a medium-resolution and an ultra-high-resolution reference gravity field, respectively. We show that the errors of the commonly used harmonic correction to gravity may be as large as the harmonic correction itself and attain peak values in areas of strong topographic variations of about 100 mGal. Moreover, we show that this correction may introduce long-wavelength biases in the computed quasi-geoid model. Furthermore, we show that the harmonic correction to height anomaly can attain values on the order of a decimetre at some points. Overall, however, the harmonic correction to height anomaly needs to be applied only in areas of strong topographic variations. In flat or hilly areas, it is mostly smaller than one centimetre. Finally, we show that the harmonic corrections increase with increasing smoothness of the RTM surface, which suggests to use a RTM surface with a spatial resolution comparable to the finest scales which can be resolved by the data rather than depending on the resolution of the global geopotential model used to reduce the data.

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

Reference27 articles.

1. Bruinsma S, Förste C, Abrikosov O, Lemoine JM, Marty JC, Mulet S, Rio MH, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41(21):7508–7514. https://doi.org/10.1002/2014GL062045

2. Denker H (2013) Regional gravity field modeling: theory and practical results. In: Xu G (ed) Sciences of Geodesy-II: innovations and future developments, Springer, Berlin, pp 185–291, https://doi.org/10.1007/978-3-642-28000-9_5

3. Denker H, Wenzel HG (1986) Recovery of short wavelength gravity field information from the topography by spectral filtering. In: Proceedings of international symposium on the definition of the Geoid, Instituto Geografico Militare Italiano, Florence, Italy, vol 1, pp 223–238

4. Duquenne H (2006) A data set to test geoid computation methods. In: Proceedings of 1st international symposium of the international gravity field service. Harita Dergisi, Istanbul, Turkey, Command of Mapping, pp 61–65

5. Eshagh M, Berntsson J (2019) On quality of nkg2015 geoid model over the Nordic countries. J Geod Sci 9:97–110

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3