Bathymetric effect on geoid modeling over the Great Lakes area

Author:

Li Xiaopeng,Lin MiaoORCID,Krcmaric Jordan,Carignan Kelly

Abstract

AbstractBathymetry data over lake areas are not included in the current and previous NGS (National Geodetic Survey) geoid models. Lake surfaces are simply treated as land surfaces during the modeling regardless of the apparent density difference between water and rock, resulting in artificial masses that distort the model from the actual gravity field and the corresponding geoid surface. In this study, compiled high-resolution bathymetry data provided by National Centers for Environmental Information are used to identify the real volume of water bodies. Under the mass conservation principle, two strategies are deployed to properly account the water body bounded by the mean lake surface and the bathymetry indicated lake floor into the current NGS geoid modeling scheme, where the residual terrain modeling method is used to account for topographic effects. The first strategy condenses water bodies into equivalent rock masses, with the cost of changing the geometrical shape of the water body. The second one keeps the shape of the water body unchanged but replaces the water and rock densities inside each topographical column bounded by the geoid surface and the mean lake surface by an averaged density. Both strategies show up to 1-cm geoid changes when compared with the previous geoid model that does not consider bathymetric information. All three geoid models are evaluated by local GNSS/Leveling benchmarks and multi-year-multi-mission altimetry indicated mean lake surface heights. The results show that both strategies can improve the geoid model precision. And the second strategy yields more realistic results. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3