Modeling ocean-induced rapid Earth rotation variations: an update

Author:

Harker Alexander A.ORCID,Schindelegger MichaelORCID,Ponte Rui M.ORCID,Salstein David A.ORCID

Abstract

AbstractWe revisit the problem of modeling the ocean’s contribution to rapid, non-tidal Earth rotation variations at periods of 2–120 days. Estimates of oceanic angular momentum (OAM, 2007–2011) are drawn from a suite of established circulation models and new numerical simulations, whose finest configuration is on a "Image missing"$$^\circ $$ grid. We show that the OAM product by the Earth System Modeling Group at GeoForschungsZentrum Potsdam has spurious short period variance in its equatorial motion terms, rendering the series a poor choice for describing oceanic signals in polar motion on time scales of less than $$\sim $$ 2 weeks. Accounting for OAM in rotation budgets from other models typically reduces the variance of atmosphere-corrected geodetic excitation by $$\sim $$ 54% for deconvolved polar motion and by $$\sim $$ 60% for length-of-day. Use of OAM from the "Image missing"$$^\circ $$ model does provide for an additional reduction in residual variance such that the combined oceanic–atmospheric effect explains as much as 84% of the polar motion excitation at periods < 120 days. Employing statistical analysis and bottom pressure changes from daily Gravity Recovery and Climate Experiment solutions, we highlight the tendency of ocean models run at a 1$$^\circ $$ grid spacing to misrepresent topographically constrained dynamics in some deep basins of the Southern Ocean, which has adverse effects on OAM estimates taken along the 90$$^\circ $$ meridian. Higher model resolution thus emerges as a sensible target for improving the oceanic component in broader efforts of Earth system modeling for geodetic purposes.

Funder

Austrian Science Fund

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3