Contributions of oceanic and continental AAM to interannual variation in ΔLOD with the detection of 2020–2021 La Nina event

Author:

Xu Xue-Qing,Zhou Yong-Hong,Duan Peng-Shuo,Fang Ming,Kong Zhao-Yang,Xu Can-Can,An Xian-Ran

Abstract

AbstractAs a strong climate element on interannual scales, the El Nino-Southern Oscillation (ENSO) is a major component of global weather and climate change, and it is also closely related to the interannual atmospheric angular momentum (AAM) and length-of-day changes (ΔLOD). Here, we reprocess and compare the interannual variations of AAM, ΔLOD with ENSO indices, with AAM mass and motion terms calculated over land separately from those over the ocean. Three oscillatory components (at ~ 6, ~ 7, ~ 8 years), due to angular momentum changes in Earth's interior, are removed to obtain the interannual ΔLOD solely related to climatic variations. Our results show that the AAM motion term over the ocean contributes the most to interannual ΔLOD, and that the oceanic AAM has larger variability than that over land, especially during the periods of strong ENSO events. After subtracting contributions associated with interior processes, the interannual ΔLOD anomalies corresponding to extreme ENSO events (1982–1983 ~ 0.43, 1997–1998 ~ 0.36, 2015–2016 ~ 0.42 ms) are about half as strong as those found in previous studies (~ 0.91, ~ 0.76, ~ 0.81 ms). Furthermore, we detect an intermediate La Nina event that occurred from August 2020 to May 2021, forcing the interannual ΔLOD to a minimum value of approximately -0.21 ms.

Funder

the B-type Strategic Priority Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3