Abstract
AbstractThe incorporation of heterogeneous data models into large-scale e-commerce applications incurs various complexities and overheads, such as redundancy of data, maintenance of different data models, and communication among different models for query processing. Graphs have emerged as data modelling techniques for large-scale applications with heterogeneous, schemaless, and relationship-centric data. Models exist for mapping different types of data to a graph; however, the unification of data from heterogeneous source models into a graph model has not received much attention. To address this, we propose a new framework in this study. The proposed framework first transforms data from various source models into graph models individually and then unifies them into a single graph. To justify the applicability of the proposed framework in e-commerce applications, we analyse and compare query performance, scalability, and database size of the unified graph with heterogeneous source data models for a predefined set of queries. We also access some qualitative measures, such as flexibility, completeness, consistency, and maturity for the proposed unified graph. Based on the experimental results, the unified graph outperforms heterogeneous source models for query performance and scalability; however, it falls behind for database size.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computational Mechanics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献