Abstract
AbstractCommunity search (CS) is a vital research area in network science that focuses on discovering personalized communities for query vertices from graphs. However, existing CS methods mainly concentrate on homogeneous or simple attributed graphs, often disregarding complex semantic information and rich contents carried by entities in heterogeneous graphs (HGs). In this paper, we propose a novel problem, namely the “Semantic Network Oriented Community Search with Meta-Structures in Heterogeneous Graphs (SNCS),” which aims to find dense communities that contain the query vertex, with vertices of the same type sharing similar topics. In response to this new problem, we present a novel approach, also named SNCS, representing the first solution employing meta-structures and topic constraints to tackle community search, leveraging both topological and latent features. To overcome the high-time complexity challenge posed by searching through meta-structures, we introduce a unique graph reconstruction technique. Our proposed method’s superiority is validated through extensive evaluations on real-world datasets. The results demonstrate a significant improvement in the quality of the obtained communities, with increases of 3.5–4.4% in clustering coefficient and 5–11% in density while requiring only 4–46% of the running time when compared with the state-of-the-art methods.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Scalable Community Search with Accuracy Guarantee on Attributed Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13