Novel Parallel Algorithms for Fast Multi-GPU-Based Generation of Massive Scale-Free Networks
Author:
Funder
Oak Ridge National Laboratory
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Computational Mechanics
Link
http://link.springer.com/content/pdf/10.1007/s41019-019-0088-6.pdf
Reference26 articles.
1. (2010) Graph 500. http://www.graph500.org/
2. Alam M (2016) HPC-based parallel algorithms for generating random networks and some other network analysis problems. Ph.D. thesis, Virginia Tech
3. Alam M, Perumalla KS (2017) Gpu-based parallel algorithm for generating massive scale-free networks using the preferential attachment model. In: IEEE international conference on Big Data (Big Data), pp 3302–3311. https://doi.org/10.1109/BigData.2017.8258315
4. Alam M, Khan M, Marathe MV (2013) Distributed-memory parallel algorithms for generating massive scale-free networks using preferential attachment model. In: International conference for high performance computing, networking, storage and analysis. https://doi.org/10.1145/2503210.2503291
5. Alam M, Khan M, Vullikanti A, Marathe M (2016) An efficient and scalable algorithmic method for generating large: Scale random graphs. In: Proceedings of the international conference for high performance computing, networking, storage and analysis. IEEE Press, Piscataway, NJ, USA, SC ’16, pp 32:1–32:12. http://dl.acm.org/citation.cfm?id=3014904.3014947
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. $$\mathrm FG^2AN$$: Fairness-Aware Graph Generative Adversarial Networks;Machine Learning and Knowledge Discovery in Databases: Research Track;2023
2. NiemaGraphGen: A memory-efficient global-scale contact network simulation toolkit;Gigabyte;2022-01-24
3. Fast GPU-Based Generation of Large Graph Networks From Degree Distributions;Frontiers in Big Data;2021-11-26
4. GPU-Based Dynamic Hyperspace Hash with Full Concurrency;Data Science and Engineering;2021-06-17
5. Heterogeneity-Aware Distributed Machine Learning Training via Partial Reduce;Proceedings of the 2021 International Conference on Management of Data;2021-06-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3