GPU-Based Dynamic Hyperspace Hash with Full Concurrency

Author:

Ren Zhuo,Gu Yu,Li Chuanwen,Li FangFang,Yu Ge

Abstract

AbstractHyperspace hashing which is often applied to NoSQL data-bases builds indexes by mapping objects with multiple attributes to a multidimensional space. It can accelerate processing queries of some secondary attributes in addition to just primary keys. In recent years, the rich computing resources of GPU provide opportunities for implementing high-performance HyperSpace Hash. In this study, we construct a fully concurrent dynamic hyperspace hash table for GPU. By using atomic operations instead of locking, we make our approach highly parallel and lock-free. We propose a special concurrency control strategy that ensures wait-free read operations. Our data structure is designed considering GPU specific hardware characteristics. We also propose a warp-level pre-combinations data sharing strategy to obtain high parallel acceleration. Experiments on an Nvidia RTX2080Ti GPU suggest that GHSH performs about 20-100X faster than its counterpart on CPU. Specifically, GHSH performs updates with up to 396 M updates/s and processes search queries with up to 995 M queries/s. Compared to other GPU hashes that cannot conduct queries on non-key attributes, GHSH demonstrates comparable building and retrieval performance.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Liao Ning Revitalization Talents Program

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computational Mechanics

Reference24 articles.

1. Escriva R, Wong B, Gün Sirer E (2012) Hyperdex: a distributed, searchable key-value store. In: PrACM SIGCOMM. ACM, pp 25–36

2. D’silva JV (2017) Roger Ruiz-Carrillo, and Cong Yu. Two rings to rule them all. In: DOLAP, Secondary indexing techniques for key-value stores

3. Pedro H, Matheus N, de Almeida Eduardo C (2018) Cracking kd-tree: the first multidimensional adaptive indexing (position paper). In: EDDY

4. Diegues N, Orazov M, Paiva J, Rodrigues L, Romano P (2014) Optimizing hyperspace hashing via analytical modelling and adaptation. ACM SIGAPP Appl Comput Rev 14(2):23–35

5. Guide Design (2013) Cuda c programming guide. In: NVIDIA

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3