Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art

Author:

Peng Yun,Choi Byron,Xu Jianliang

Abstract

AbstractGraphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses machine learning to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding methods and end-to-end learning methods. For graph embedding methods, the learning of the the embeddings of the graphs has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For end-to-end learning methods, the learning of the embeddings of the graphs does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix using search heuristics such as beam search. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.

Funder

Hong Kong Research Grants Council

QLUT Young Scholar Fund

Start-up Foundation of Hong Kong Baptist University

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Computational Mechanics

Reference78 articles.

1. Abe K, Xu Z, Sato I, Sugiyama M (2019) Solving np-hard problems on graphs with extended alphago zero. arXiv:1905.11623

2. Bai Y, Ding H, Bian S, Chen T, Sun Y, Wang W (2019) SimGNN: a neural network approach to fast graph similarity computation. In: Proceedings of the ACM international conference on web search and data mining (WSDM’19), pp 384–392

3. Bai Y, Ding H, Gu K, Sun Y, Wang W (2020) Learning-based efficient graph similarity computation via multi-scale convolutional set matching. In: Proceedings of the AAAI conference on artificial intelligence (AAAI’20), pp 3219–3226

4. Bai Y, Xu D, Wang A, Gu K, Wu X, Marinovic A, Ro C, Sun Y, Wang W (2020) Fast detection of maximum common subgraph via deep Q-learning. arXiv:2002.03129

5. Bengio Y, Lodi A, Prouvost A (2018) Machine learning for combinatorial optimization: A methodological tour d’horizon. arXiv:1811.06128

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multivariate graph neural networks on enhancing syntactic and semantic for aspect-based sentiment analysis;Applied Intelligence;2024-08-30

2. GOLEM: Flexible Evolutionary Design of Graph Representations of Physical and Digital Objects;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

3. Neural discovery of balance-aware polarized communities;Machine Learning;2024-07-09

4. Research on Power System Optimization Algorithm Frameworks Empowered by Machine Learning;2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2024-06-07

5. Solving the kidney exchange problem via graph neural networks with no supervision;Neural Computing and Applications;2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3