A finite element based optimization algorithm to include diffusion into the analysis of DCE-MRI

Author:

Sainz-DeMena Diego,Ye Wenfeng,Pérez María Ángeles,García-Aznar José ManuelORCID

Abstract

AbstractPharmacokinetic (PK) models are used to extract physiological information from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) sequences. Some of the most common models employed in clinical practice, such as the standard Tofts model (STM) or the extended Tofts model (ETM), do not account for passive delivery of contrast agent (CA) through diffusion. In this work, we introduce a diffusive term based on the concept of effective diffusivity into a finite element (FE) implementation of the ETM formulation, obtaining a new formulation for the diffusion-corrected ETM (D-ETM). A gradient-based optimization algorithm is developed to characterize the vascular properties of the tumour from the CA concentration curves obtained from imaging clinical data. To test the potential of our approach, several theoretical distributions of CA concentration are generated on a benchmark problem and a real tumour geometry. The vascular properties used to generate these distributions are estimated from an inverse analysis based on both the ETM and the D-ETM approaches. The outcome of these analyses shows the limitations of the ETM to retrieve accurate parameters in the presence of diffusion. The ETM returns smoothed distributions of vascular properties, reaching unphysical values in some of them, while the D-ETM accurately depicted the heterogeneity of KTrans, v$$_{e}$$ e and v$$_{p}$$ p distributions (mean absolute relative difference (ARD) of 16%, 15% and 9%, respectively, for the real geometry case) keeping all their values within their physiological ranges, outperforming the ETM.

Funder

Horizon 2020

Ministerio de Ciencia, Innovación y Universidades

Universidad de Zaragoza

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3