Affiliation:
1. School of Physics and Astronomy University of Leeds Leeds UK
2. Division of Clinical Medicine University of Sheffield Sheffield UK
3. School of Civil Engineering University of Leeds Leeds UK
4. Department of Applied Physics Ghent University Ghent Belgium
Abstract
AbstractIn perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions‐of‐interest as isolated systems supplied by a single global source. This simplification not only leads to long‐recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between‐voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state‐of‐the‐art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research.
Funder
Engineering and Physical Sciences Research Council
Subject
Radiology, Nuclear Medicine and imaging
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献