Computational framework for complex flow and transport in heterogeneous porous media

Author:

Icardi MatteoORCID,Pescimoro Eugenio,Municchi Federico,Hidalgo Juan J.

Abstract

AbstractWe present a flexible scalable open-source computational framework, named , based on the finite-volume library OpenFOAM®, for flow and transport problems in highly heterogeneous geological media and other porous materials. The framework combines geostatistical pre- and post-processing tools with specialised partial differential equations solvers. Random fields, for permeability and other physical properties, are generated by means of continuous or thresholded Gaussian random fields with various covariance/variogram functions. The generation process is based on an explicit spectral Fourier decomposition of the field which, although more computationally intensive than Fast Fourier Transform methods, allows a more flexible choice of statistical parameters and can be used for general geometries and grids. Flow and transport equations are solved for single-phase and variable density problems, with and without the Boussinesq approximation, and for a wide range of density, viscosity, and dispersion models, including dual-continuum (dual permeability or dual porosity) formulations. The mathematical models are here presented in details and the numerical strategies to deal with heterogeneities, equation coupling, and boundary conditions are discussed and benchmarked for the heterogeneous Henry and Horton–Rogers–Lapwood problems, and other test cases. We show that our framework is capable of dealing with large permeability variances, viscous instabilities, and large-scale three-dimensional transport problems.

Funder

Horizon 2020 Framework Programme

Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,General Engineering,Modeling and Simulation,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3