1. Gaus, Y.F.A., Bhowmik, N., Akçay, S., Guillén-Garcia, P.M., Barker, J.W., Breckon, T.P.: Evaluation of a dual convolutional neural network architecture for object-wise anomaly detection in cluttered x-ray security imagery. In: 2019 International Joint Conference on Neural Networks, pp. 1–8 (2019)
2. Tao, X., Zhang, D., Ma, W., Hou, Z., Lu, Z., Adak, C.: Unsupervised anomaly detection for surface defects with dual-siamese network. IEEE Trans. Ind. Inform. 18(11), 7707–7717 (2022)
3. Lüth, C.T., Zimmerer, D., Koehler, G., Jaeger, P.F., Isenensee, F., Maier-Hein, K.H.: Contrastive representations for unsupervised anomaly detection and localization. In: BVM Workshop, pp. 246–252 (2023)
4. Tao, X., Gong, X., Zhang, X., Yan, S., Adak, C.: Deep learning for unsupervised anomaly localization in industrial images: a survey. IEEE Trans. Instrum. Meas. 71, 1–21 (2022)
5. Liu, J., Xie, G., Wang, J., Li, S., Wang, C., Zheng, F., Jin, Y.: Deep industrial image anomaly detection: a survey. arXiv preprint, 2 (2023). arXiv:2301.11514