3D objects reconstruction from frontal images: an example with guitars

Author:

Beacco Alejandro,Gallego JaimeORCID,Slater Mel

Abstract

AbstractThis work deals with the automatic 3D reconstruction of objects from frontal RGB images. This aims at a better understanding of the reconstruction of 3D objects from RGB images and their use in immersive virtual environments. We propose a complete workflow that can be easily adapted to almost any other family of rigid objects. To explain and validate our method, we focus on guitars. First, we detect and segment the guitars present in the image using semantic segmentation methods based on convolutional neural networks. In a second step, we perform the final 3D reconstruction of the guitar by warping the rendered depth maps of a fitted 3D template in 2D image space to match the input silhouette. We validated our method by obtaining guitar reconstructions from real input images and renders of all guitar models available in the ShapeNet database. Numerical results for different object families were obtained by computing standard mesh evaluation metrics such as Intersection over Union, Chamfer Distance, and the F-score. The results of this study show that our method can automatically generate high-quality 3D object reconstructions from frontal images using various segmentation and 3D reconstruction techniques.

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on load monitoring technology of mine hoist based on machine vision;Measurement Science and Technology;2024-05-08

2. Visualization Challenges of Virtual Reality 3D Images in New Media Environments;Applied Mathematics and Nonlinear Sciences;2024-01-01

3. Guitar Parts Extraction and Keypoint Detection Based on Synthetic Annotation;2023 8th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC);2023-11-03

4. Computer Vision Algorithms for 3D Object Recognition and Orientation: A Bibliometric Study;Electronics;2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3