The interactive pedological-hydrological processes and environmental sensitivity of a tropical isolated wetland in the Brazilian Cerrado

Author:

Furlan Lucas MoreiraORCID,Rosolen Vania,Moreira César Augusto,Bueno Guilherme Taitson,Ferreira Manuel Eduardo

Abstract

AbstractIn seasonal flooding isolated wetlands, the degree of wetness suggests a close synergy between soil processes, landscape evolution and hydrology along space and time. Until now, that subject has received insufficient attention despite natural wetlands supply essential environmental services to society and are surrounded by intensive agriculture that uses agrochemicals and fertilizers in their management. The objectives of this study were to propose an infiltration architecture model based on local surface and subsurface water-fluxes in isolated wetland embedded in lateritic plateau covered by savanna and qualify the environmental sensitivity as an area of aquifer recharge. Grain size, soil bulk density, and hydraulic conductivity were determined in five profiles in a soil catena. Unmanned Aerial Vehicle high-resolution images were obtained to generate a digital elevation model and discriminate areas with different vegetation, water accumulation, and environmental sensitivity. Electrical tomography was performed to unveil the soil architecture and infiltration. The soils (Plinthosols) developed on aquic conditions determine the linkage between the surface–subsurface hydrodynamics with the soil's physical properties. We have identified vertical and lateral water-flows in the soil architecture. Vertical flow occurs exclusively at the center, where the wetland is characterized as a recharge zone. Lateral flow towards the borders characterizes a discharge zone. The recharge zone is a depression surrounded by crops; therefore, it is a point of high environmental sensitivity. This hydrodynamic model is essential to support studies related to the dispersion of contaminants since soybean agriculture dominates the whole area of well-drained soils in the Brazilian Cerrado.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3