Aquifer recharge capacity assessment of an anthropogenically impacted wetland by the DC resistivity geophysical method

Author:

Moreira César AugustoORCID,Rosolen Vania SilviaORCID,Hansen Marco Antonio FoutouraORCID,Masquelin HenriORCID,Mota RogérioORCID

Abstract

AbstractPopulation growth and social and economic development demand increasing volumes of water for public supply, especially in scenarios where surface sources such as rivers may not meet the basic demands for the population. In southeastern Brazil, with emphasis on the Piracicaba region, there is a conflict over water use regarding agricultural and industrial activities, where the sugar-alcohol sector is widely highlighted. The region has thousands of hectares of sugarcane cultivated, which requires intensive use of fertilizers and pesticides, in addition to the need for large volumes of water in the production of sugar and ethanol, where the main effluent produced is represented by vinasse, used as fertilizer complement and soil hydration in sugarcane fields. This work presents the results of a geophysical diagnosis in a closed wetland, located in a sugarcane field region, to evaluate the hydrogeological function of this environment in aquifer recharge and the risks that land use can cause in the quality and availability of surface and underground water resources. The geophysical survey consisted of nine lines of electrical resistivity tomography in Schlumberger arrangement, submitted to 2D processing and inversion followed by interpolation and generation of 3D visualization models. The results indicate a direct connection between water accumulated in the wetland and the aquifer underneath, separated by an aquitard interface about 44 m thickness. The study points out to the high vulnerability to the input of pesticides and vinasse effluent from the surrounding sugarcane fields to the interior of the wetland, given the absence of riparian forest or buffer zone, in addition to the risk of contamination of surface and groundwater. Understanding the local hydrological dynamics should subsidize the sustainable use of the soil providing preservation of water resources, with emphasis on aquifers, a source of increasing importance in the face of the imminent scarcity of surface resources.

Funder

São Paulo Research Fundation - FAPESP

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3