Abstract
AbstractThe present study investigates the characteristics of carbonaceous species like organic carbon (OC) and elemental carbon (EC) in ambient total suspended particulates (TSP) at Bhimtal (high altitude urban, 1413 m asl) and Pantnagar (lowland urban, 224 m asl) sites of Kumaon province in Uttarakhand, Indian Himalayan region during winter and summer 2017–2018. Ambient TSP samples were taken on quartz filters with high volume sampler followed by OC and EC quantification using IMPROVE_thermal optical reflectance protocol. Results showed that distinct seasonal differences in carbonaceous species levels were observed at both sites, while day- and night-time concentrations did not show notable variations. Further, total carbonaceous aerosols (TCA) at Pantnagar were approximately 3.0 and 1.3 times higher than Bhimtal for winter and summer, respectively, where estimated TCA accounted for ~ 30% to total TSP at both sites. Among quantified eight carbon fractions, OC2 and OC3 at Bhimtal while EC1 and EC2 at Pantnagar were the most abundant components. The char-EC and soot-EC concentrations showed a similar seasonal pattern where char contributed significantly as 89–90% to total EC at both sites. The observed OC/EC ratios suggested the formation of secondary organic carbon and char-EC/soot-EC ratios implied biomass burning as major sources for carbonaceous aerosols. Pearson correlation analysis indicated that char-EC showed significant higher correlations with OC and EC than soot-EC which infers different formation mechanisms of char and soot. Most of the carbonaceous parameters exhibited contrasting positive and negative correlations with the boundary layer height, temperature, and solar radiation at Bhimtal and Pantnagar, respectively.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献