Assessment of carbonaceous fractions in ambient aerosols at high altitude and lowland urban locations of Kumaon Province, Indian Himalaya

Author:

Kumar AmitORCID,Singh Sachchidanand,Kumar Niraj,Singh Narendra,Kumar Krishan,Chourasiya Sapna

Abstract

AbstractThe present study investigates the characteristics of carbonaceous species like organic carbon (OC) and elemental carbon (EC) in ambient total suspended particulates (TSP) at Bhimtal (high altitude urban, 1413 m asl) and Pantnagar (lowland urban, 224 m asl) sites of Kumaon province in Uttarakhand, Indian Himalayan region during winter and summer 2017–2018. Ambient TSP samples were taken on quartz filters with high volume sampler followed by OC and EC quantification using IMPROVE_thermal optical reflectance protocol. Results showed that distinct seasonal differences in carbonaceous species levels were observed at both sites, while day- and night-time concentrations did not show notable variations. Further, total carbonaceous aerosols (TCA) at Pantnagar were approximately 3.0 and 1.3 times higher than Bhimtal for winter and summer, respectively, where estimated TCA accounted for ~ 30% to total TSP at both sites. Among quantified eight carbon fractions, OC2 and OC3 at Bhimtal while EC1 and EC2 at Pantnagar were the most abundant components. The char-EC and soot-EC concentrations showed a similar seasonal pattern where char contributed significantly as 89–90% to total EC at both sites. The observed OC/EC ratios suggested the formation of secondary organic carbon and char-EC/soot-EC ratios implied biomass burning as major sources for carbonaceous aerosols. Pearson correlation analysis indicated that char-EC showed significant higher correlations with OC and EC than soot-EC which infers different formation mechanisms of char and soot. Most of the carbonaceous parameters exhibited contrasting positive and negative correlations with the boundary layer height, temperature, and solar radiation at Bhimtal and Pantnagar, respectively.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3