Reversal modeling and optimal design of hyper-elastic diaphragm in space fuel tanks

Author:

Sabaghzadeh Hossein,Shafaee Mazyar

Abstract

AbstractDiaphragm tanks are a common type of pressurized tanks in which the diaphragm is used to separate the fuel part from the high-pressure part, compress the fuel in the tank, and reduce free space to avoid liquid fuel sloshing. The main purpose of the application of the diaphragm tanks is to ensure the continuous flow of pure fuel without the gas bubble into the spacecraft engine. In space mission, diaphragm tanks will experience a wide range of acceleration at different levels of filling. These conditions change the state of equilibrium between the volume of the gas and the fluid and move the diaphragm toward the discharge portion of the tank. As a result of this movement, the diaphragm curvature is changed and the structure collapses at rest, which is called folding. When large nonlinear folding occurs, there is potential for diaphragm damage through wear, rubbing, and excessive stress. Predicting diaphragm behavior in order to calculate a diaphragm’s susceptibility to corrosion, rupture, and surface strain is one of the major design challenges. In this study, new method is provided to analyze deformation of diaphragm tanks by using numerical techniques. Also, the investigation method is verified by using experimental methods. In this process, first a 3D numerical model is developed to investigate the inverse behavior of a hyper-elastic diaphragm by using ANSYS software and the results of the simulations are compared with the results of experimental tests in the same situation. After validation, a second case study is performed to survey the effect of reducing diaphragm thickness according to the strain energy and natural frequency behavior of the diaphragm in different fill levels. The results of this study showed that numerical simulations are capable of reconstructing diaphragm inversion properties with good accuracy. In addition, the numerical model can detect the proper thickness for the diaphragm. In the last section, algorithm and software for optimal automatic modeling of diaphragm tanks are proposed.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3