Static analysis and contact angle hysteresis study of bubbles in Chinese space station tank models under different gravity effects

Author:

Chen Zhewen,Chen YiORCID,Wu Di,Li Ce,Zhang Yuhao,Pang Huan,Duan LiORCID,Wang JiaORCID,Ye Zhijun,Zhang PuORCID,Hu LiangORCID,Chen ShuyangORCID,Kang QiORCID

Abstract

In most space shuttle fuel tanks, a central column is used to secure the Propellant Management Devices. This study focuses on the distribution of fluids in such tanks. Microgravity experiments are conducted on the Chinese Space Station, and annular bubbles surrounding the central column have been observed for the first time. An in-depth study is carried out on the distribution and profile of these bubbles using perturbation methods and the Young–Laplace equation. Theoretical values for the gas–liquid interface morphology of annular bubbles under different gravity levels are obtained and compared with numerical simulation results, showing substantial agreement. The phenomenon of contact angle hysteresis of bubbles under gravity conditions was studied through simulation and theoretical analysis. Detailed analysis of the characteristics of contact angle hysteresis and corresponding drag resistance using the Wenzel model was carried out. Based on this, a numerical calculation program based on the shooting method was developed to obtain the morphology of the same bubble under different gravities. Furthermore, it was found that the theoretical maximum Bond number for circular bubbles suspended on the central column is 2, and it was observed that bubbles with equilibrium contact angles closer to 90° exhibit greater upward displacement of their centroids under varying gravity, providing theoretical support for bubble management in aerospace engineering.

Funder

China Manned Space Engineering Program

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3