Optimization of Cutting Parameters Affecting Surface Roughness in Turning of Inconel 625 Superalloy by Cryogenically Treated Tungsten Carbide Inserts

Author:

Akgün MahirORCID,Demir HalilORCID

Abstract

AbstractThis work focuses on developing the mathematical model of surface roughness (Ra) in the turning of Inconel 625 superalloy with cryogenically treated tungsten carbide inserts. The influence of cryogenic treated on the microstructure and hardness of tungsten carbide tools was also investigated for the as-received inserts and deep cryogenic treatment at − 196 °C for 12, 24, and 36 h conditions. Turning experiments have been performed according to an orthogonal array L16 with three parameters (cutting tool, feed rate, cutting speed) at different levels with a 1 mm depth of cut. The ideal cutting tool and cutting parameters were evaluated in terms of the surface roughness (Ra). Analysis of Variance has been applied to determine the percentage of each cutting factor. It has been observed that the cutting speed has a maximum with 66.28% contribution on Ra. The best optimal turning parameters are obtained as A3B3C1 according to S/N ration. The mathematical model of Ra has been developed by regression analysis. The developed model is tested with verification experiments and found to be in good agreement with the experimental results.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference20 articles.

1. Trent EM (1989) Metal cutting, 3rd edn. Butterworths Press, London

2. Jawaid A, Koksal S, Sharif S (2001) Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling Inconel 718 aerospace alloy. J Mater Process Technol 116:2–9

3. Inconel 625 Alloy, https://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-625.pdf Accessed 20 June 2020

4. High-Temperature Machining Guide, https://www.kennametal.com/content/dam/kennametal/kennametal/common/Resources/Catalogs-Literature/Metalworking/SuperAlloys_material_machining_guide_Aerospace.pdf.” Accessed 20 June 2020

5. Cetin MH, Ozcelik B, Kuram E, Demirbas E (2011) Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J Clean Prod 19:2049–2056

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3