Abstract
AbstractClinical diagnosis of Parkinson’s disease (PD) motor symptoms remains a problem. Most of the current studies focus on objective evaluations to make the evaluation more reliable. Most of these systems are based on the use of inertial and electromyographic sensors that require contact with the body part being assessed. Contact sensors restrict natural movement, may be uncomfortable and may require preparation of the body, which may cause irritation. As an alternative to contact sensors for the study of hand motor tasks performed by subjects with and without PD, electrical potential sensing technology is used in this research. A custom hardware has been designed to enable data collection by hand movement. A micro-machine system validated the developed system, and a relationship model was established between hand displacement and non-contact capacitive (NCC) sensor response. An experiment was conducted, including 57 subjects, 30 with PD (experimental group) and 27 healthy control group, followed by an analysis of statistical features extracted from the instantaneous mean frequency (IMNF) of NCC sensor. These results were compared with those obtained from gyroscope signals that are considered in the field to be the gold standard. As a result, NCC responses were correlated linearly with hand displacement (R2 = 0.7692 and $${\text{R}}_{\text{adj}}^{2}$$
R
adj
2
= 0.7631). The statistical evaluation of IMNF features showed, that both, contact and non-contact sensors, were able to discriminate movement patterns of the control group from the experimental one. The results confirm statistical similarity between features extracted from NCC and gyroscope signals.
Funder
Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do
Estado de Minas Gerais
Conselho Nacional de Desenvolvimento
Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献