Active prevention of snow accumulation on cameras of autonomous vehicles

Author:

Mohammadian Behrouz,Sarayloo Mehdi,Heil Jamie,Hong Haiping,Patil Sunil,Robertson Michael,Tran Tommy,Krishnan Venkatesh,Sojoudi Hossein

Abstract

Abstract Accumulation of atmospheric icing, particularly wet snow, on the visual sensors/navigators of autonomous vehicles (AVs) increases the possibility of accidents by obstructing the lenses of the sensors. Here, two navigator designs were suggested that use airflow across the lens surfaces of the AVs to prevent snow accumulation on them. The impact of airflow intensity across the lens, wind velocity (relative velocity of wind with respect to vehicle), and liquid water content of snow on prevention of snow accumulation on the lenses of the AVs was explored experimentally. Here, artificial snow grains were formed using a novel snow gun and their average sizes at low liquid water content (LWC of ≈ 8%) and high liquid water content (LWC of ≈ 28%) were measured to study the impact of grain sizes on snow accumulation on camera lenses. The effects of wind velocity, snow density, and diameter of the snow grains on their trajectory in the testing section were also studied numerically. The results indicated that the snow grains with higher velocity, density, or diameter possessed higher inertia forces and were more prone to collide with the navigator, increasing collision efficiency of snow grains. We realized that the airflow across the lens effectively prevented snow accumulation on the lens at vehicle/wind velocities of up to 20 mph. The proposed designs actively reduced the snow accumulation on the camera lens, promising to be applied in future AVs. Graphic abstract

Funder

Ford Motor Company

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3