Multiclass skin lesion classification using deep learning networks optimal information fusion

Author:

Khan Muhammad Attique,Hamza Ameer,Shabaz Mohammad,Kadry Seifeine,Rubab Saddaf,Bilal Muhammad Abdullah,Akbar Muhammad Naeem,Kesavan Suresh Manic

Abstract

AbstractA serious, all-encompassing, and deadly cancer that affects every part of the body is skin cancer. The most prevalent causes of skin lesions are UV radiation, which can damage human skin, and moles. If skin cancer is discovered early, it may be adequately treated. In order to diagnose skin lesions with less effort, dermatologists are increasingly turning to machine learning (ML) techniques and computer-aided diagnostic (CAD) systems. This paper proposes a computerized method for multiclass lesion classification using a fusion of optimal deep-learning model features. The dataset used in this work, ISIC2018, is imbalanced; therefore, augmentation is performed based on a few mathematical operations. After that, two pre-trained deep learning models (DarkNet-19 and MobileNet-V2) have been fine-tuned and trained on the selected dataset. After training, features are extracted from the average pool layer and optimized using a hybrid firefly optimization technique. The selected features are fused in two ways: (i) original serial approach and (ii) proposed threshold approach. Machine learning classifiers are used to classify the chosen features at the end. Using the ISIC2018 dataset, the experimental procedure produced an accuracy of 89.0%. Whereas, 87.34, 87.57, and 87.45 are sensitivity, precision, and F1 score respectively. At the end, comparison is also conducted with recent techniques, and it shows the proposed method shows improved accuracy along with other performance measures.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3