Health monitoring of bolted joints using modal-based vibrothermography

Author:

Chi XintianORCID,Di Maio Dario,Lieven Nicholas A. J.

Abstract

AbstractThis article presents a novel modal-based vibrothermographic approach for health monitoring of loosening bolted joints in coupled structures. In this article, the theoretical background supporting this proposed approach is firstly presented. Through finite element analyses on a simple bolted structure with varying joint conditions achieved by adjustment of bolt loads, the relationship between the bolt load and the temperature increase in the vibrating bolted joint during vibrothermographic tests was revealed. Experimental vibrothermographic tests on a more complex structure were completed to verify the observations from the finite element analyses while demonstrating the viability of the vibrothermographic approach in a laboratory environment. It has been shown that this vibrothermographic approach was able to determine the stage of a bolted joint in its progression of failure by tracing the changes in the temperature increase in relevant regions during vibrothermographic tests. Moreover, additional tests have been performed to illustrate that this approach was effective even by using only the residual responses of the structure’s vibration that were away from the resonances, which indicates it is more applicable to structures with higher damping as such structures have stronger residual responses during vibration that can be utilized. In the concluding observations of the article, the procedure for practical application of this approach is summarized, and its potential for further development is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3