Modeling and Validation of the Nonlinear Dynamic Behavior of Bolted Flange Joints

Author:

Schwingshackl C. W.1,Di Maio D.2,Sever I.3,Green J. S.4

Affiliation:

1. Imperial College London, London, UK e-mail:

2. University of Bristol, Bristol, UK e-mail:

3. e-mail:

4. e-mail:  Rolls-Royce, Derby, UK

Abstract

Linear dynamic finite element analysis can be considered very reliable today for the design of aircraft engine components. Unfortunately, when these individual components are built into assemblies, the level of confidence in the results is reduced since the joints in the real structure introduce nonlinearity that cannot be reproduced with a linear model. Certain types of nonlinear joints in an aircraft engine, such as underplatform dampers and blade roots, have been investigated in great detail in the past, and their design and impact on the dynamic response of the engine is now well understood. With this increased confidence in the nonlinear analysis, the focus of research now moves towards other joint types of the engine that must be included in an analysis to allow an accurate prediction of the engine behavior. One such joint is the bolted flange, which is present in many forms on an aircraft engine. Its main use is the connection of different casing components to provide the structural support and gas tightness to the engine. This flange type is known to have a strong influence on the dynamics of the engine carcase. A detailed understanding of the nonlinear mechanisms at the contact is required to generate reliable models and this has been achieved through a combination of an existing nonlinear analysis capability and an experimental technique to accurately measure the nonlinear damping behavior of the flange. Initial results showed that the model could reproduce the correct characteristics of flange behavior, but the quantitative comparison was poor. From further experimental and analytical investigations it was identified that the quality of the flange model is critically dependent on two aspects: the steady stress/load distribution across the joint and the number and distribution of nonlinear elements. An improved modeling approach was developed that led to a good correlation with the experimental results and a good understanding of the underlying nonlinear mechanisms at the flange interface.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3