Visualization of 3D cable between utility poles obtained from laser scanning point clouds: a case study

Author:

Inoue MasaakiORCID,Niigaki Hitoshi,Shimizu Tomoya,Honda Nazuki,Oshida Hiroyuki,Ebine Takashi

Abstract

Abstract We can automate inspection work of infrastructure facilities by analyzing the characteristics of 3D structure information obtained through 3D structure visualization using a point cloud. The safety level of equipment can then be diagnosed quantitatively. In this paper, we investigate the modeling of wire structures such as overhead communication cables between utility poles, which are close to the ground, have many obstructions, and have a complex structure. We evaluate the accuracy of cable models and compare them to the correct model. We use three modeling methods: a machine-learning method based on the extruded surface of a point cloud as a feature, a rule-based method involving principal component analysis, and models generated from a combination of these models. In addition, we focus on modeling overhead cables from field data (urban and suburban). Results show the practicability of modeling overhead cables with a cable length of 10–70 m regardless of the area type. We find that the best cable modeling rate with the precision and recall of 80.76% and 83.84%, respectively, can be obtained using the machine-learning method and by specifying the cable reproduction rate to be 2 m. Article highlights This study is useful in determining the practicality of 3D visualization of communication cables based on a 3D point cloud. Precision and recall are presented as indices to determine the practicality of 3D cable modeling. This study provides 3D cable modeling for actual field data (in suburban, bridges, and urban areas).

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3