Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works

Author:

Ham Youngjib,Han Kevin K.,Lin Jacob J,Golparvar-Fard Mani

Abstract

AbstractOver the past few years, the application of camera-equipped Unmanned Aerial Vehicles (UAVs) for visually monitoring construction and operation of buildings, bridges, and other types of civil infrastructure systems has exponentially grown. These platforms can frequently survey construction sites, monitor work-in-progress, create documents for safety, and inspect existing structures, particularly for hard-to-reach areas. The purpose of this paper is to provide a concise review of the most recent methods that streamline collection, analysis, visualization, and communication of the visual data captured from these platforms, with and without using Building Information Models (BIM) as a priori information. Specifically, the most relevant works from Civil Engineering, Computer Vision, and Robotics communities are presented and compared in terms of their potential to lead to automatic construction monitoring and civil infrastructure condition assessment.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Engineering (miscellaneous),Modelling and Simulation

Reference40 articles.

1. ARIA Team (2015). "The Aerial Robotic Infrastructure Analyst (ARIA) project." .

2. Blo, x, sch, M, Weiss, S, Scaramuzza, D, and Siegwart, R. “Vision based MAV navigation in unknown and unstructured environments.” Proc., Robotics and Automation (ICRA), 2010 IEEE International Conference on, Piscataway, NJ. 21-28.

3. Cho, YK, Ham, Y, & Golpavar-Fard, M. (2015). 3D as-is building energy modeling and diagnostics: A review of the state-of-the-art. Advanced Engineering Informatics, 29(2), 184–195.

4. DJI (2015). “DJI Pilot version 1.2.0.”, .

5. Dobson, RJ., Brooks, C, Roussi, C, and Colling, T. “Developing an unpaved road assessment system for practical deployment with high-resolution optical data collection using a helicopter UAV.” Proc., Unmanned Aircraft Systems (ICUAS), 2013 International Conference on, Piscataway, NJ. 235-243.

Cited by 352 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3