Material removal predictions in the robot glass polishing process using machine learning

Author:

Schneckenburger MaxORCID,Höfler Sven,Garcia Luis,Almeida Rui,Börret Rainer

Abstract

Abstract Robot polishing is increasingly being used in the production of high-end glass workpieces such as astronomy mirrors, lithography lenses, laser gyroscopes or high-precision coordinate measuring machines. The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. Whilst the trend towards sub nanometre level surfaces finishes and features progresses, matching both form and finish coherently in complex parts remains a major challenge. With increasing optic sizes, the stability of the polishing process becomes more and more important. If not empirically known, the optical surface must be measured after each polishing step. One approach is to mount sensors on the polishing head in order to measure process-relevant quantities. On the basis of these data, machine learning algorithms can be applied for surface value prediction. Due to the modification of the polishing head by the installation of sensors and the resulting process influences, the first machine learning model could only make removal predictions with insufficient accuracy. The aim of this work is to show a polishing head optimised for the sensors, which is coupled with a machine learning model in order to predict the material removal and failure of the polishing head during robot polishing. The artificial neural network is developed in the Python programming language using the Keras deep learning library. It starts with a simple network architecture and common training parameters. The model will then be optimised step-by-step using different methods and optimised in different steps. The data collected by a design of experiments with the sensor-integrated glass polishing head are used to train the machine learning model and to validate the results. The neural network achieves a prediction accuracy of the material removal of 99.22%. Article highlights First machine learning model application for robot polishing of optical glass ceramics The polishing process is influenced by a large number of different process parameters. Machine learning can be used to adjust any process parameter and predict the change in material removal with a certain probability. For a trained model,empirical experiments are no longer necessary Equipping a polishing head with sensors, which provides the possibility for 100% control

Funder

Bundesministerium für Bildung und Forschung

Hochschule Aalen - Technik und Wirtschaft

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3