Soil salinity mapping using Landsat 8 OLI data and regression modeling in the Great Hungarian Plain

Author:

Sahbeni GhadaORCID

Abstract

AbstractSalt's deposition in the subsoil is known as salinization. It is caused by natural processes such as mineral weathering or human-made activities such as irrigation with saline water. This environmental issue has grown more critical and is frequently occurring in the Hungarian Great Plain, adversely influencing agricultural productivity. This study aims to predict soil salinity in the Great Hungarian Plain, located in the east of Hungary, using Landsat 8 OLI data combined with four state-of-the-art regression models, i.e., Multiple Linear Regression, Partial Least Squares Regression, Ridge Regression, and Feedforward Artificial Neural Network. For this purpose, seventy-six soil samples were collected during a field survey conducted by the Research Institute for Soil Sciences and Agricultural Chemistry between the 15 of September and the 15 of October, 2016. We used the min–max accuracy, the root-mean-square error (RMSE), and the mean squared error (MSE) to evaluate and compare the four models' performance. The results showed that the ridge regression model performed the best in terms of prediction (MSEtraining = 0.006, MSEtest = 0.0007, RMSE = 0.081), with a min–max accuracy equal to 0.75. Hence, the application of regression modeling on spectral indices, principal component analysis, and land surface temperature derived from multispectral data is an efficient method for soil salinity assessment at local scales. The resulting map can provide an overview of salinity levels and evaluate the efficiency of land management strategies in irrigated areas. An increase in sampling density will be recommended to validate this approach on the regional scale.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3