Analysis of biogeochemical processes in plastic-covered soil during establishment period in strawberry cultivation

Author:

Meyer M.ORCID,Diehl D.,Schaumann G. E.,Muñoz K.

Abstract

AbstractPlastic mulching (PM) has become a widely applied agricultural practice to optimize plant growth. However, it is still under debate how PM influences biogeochemical soil processes and thus important factors of soil quality, such as soil organic matter (SOM) composition, aggregate stability and microbial biomass. Our objective was to identify the impact of PM on biogeochemical soil processes. Therefore, we compared a plastic-covered strawberry cultivation system (PC) with an uncovered system (NC) in three soil layers (0–10, 10–30 and 30–60 cm) at three dates during a 4-month period of strawberry establishment from their transplanting in summer to the beginning of winter. The PC shifted the microclimate of the soil towards higher temperatures but lower moistures in the 0–35 cm soil layer compared to uncovered soil. Predominantly in the surface layer, the PC reduces leaching processes, which can improve nutrient (fertilizer) use efficiency. PC increased SOM and shifted SOM to a more stable SOM. The higher SOM under PC despite larger microbial biomass and elevated temperatures, indicate that belowground biomass inputs compensate the potential SOM losses by an enhanced SOM decomposition under PC. We demonstrated that PC influenced soil processes already within the 4-month period of strawberry establishment, partially down to the 30–60 soil layer. Further, long-term studies are required to estimate the influence of multi-annual PM application on biogeochemical soil processes and on soil quality.

Funder

Universität Koblenz-Landau

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3