Effects of Plastic versus Straw Mulching Systems on Soil Microbial Community Structure and Enzymes in Strawberry Cultivation

Author:

Muñoz Katherine,Thiele-Bruhn SörenORCID,Kenngott Kilian G. J.,Meyer Maximilian,Diehl DörteORCID,Steinmetz ZachariasORCID,Schaumann Gabriele E.ORCID

Abstract

This study aimed to evaluate changes in abundance, structure, and enzyme activity of the soil microbiome in response to 4 years of mulching using either black polyethylene plastic film (PM) or wheat straw (SM). Soil samples (depth 0–5 and 5–10 cm) were collected from conventional strawberry plots, in two samplings: 1 week prior (S1) and 7 weeks after straw application (S2). Selected soil properties were monitored in each system and the abundance and structure of microbial communities were characterized via phospholipid fatty acid (PLFA) analysis. The investigation of soil microbial functions included activities of the enzymes chitinase, leucine aminopeptidase, and acid phosphatase, as well as function genes involved in nitrogen transformation. Each mulch system resulted in distinct physicochemical properties. In particular, a pH value higher by one-unit under PM (7.6 ± 0.3) compared to SM (6.5 ± 0.3) was observed. Values for SOC, DOC, and total-N were 15%, 22%, and 16% higher in PM than in SM. The microbial biomass (total PLFAs) was 1.5-fold higher in SM compared to PM. The abundance of soil fungi (F) and bacteria (B) increased by 37% and 44% after straw incorporation compared to PM (S2). In particular, Gram-negative bacteria (gr–) increased by twofold in SM. Consequently, wider F:B and gr+:gr– ratios were observed in PM. According to the shifts in microbial abundance, the activity of the enzyme chitinase was lower by 27% in PM, while the activity of the acid phosphatase increased by 32%. Denitrification genes were not affected by the mulching systems. In conclusion, the abundance and structure of the investigated microbial groups and the enzyme activities were strongly influenced by the mulching system. In detail, effects on microbiota were primarily attributed to the altered soil pH and probably the input of degradable organic matter with straw mulching in SM. This resulted in higher abundance of soil microorganisms in SM, although measures within this cultivation system such as fungicide application may have exerted adverse effects on the microbiota.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3