Towards efficient video-based action recognition: context-aware memory attention network

Author:

Koh Thean Chun,Yeo Chai Kiat,Jing Xuan,Sivadas Sunil

Abstract

Abstract Given the prevalence of surveillance cameras in our daily lives, human action recognition from videos holds significant practical applications. A persistent challenge in this field is to develop more efficient models capable of real-time recognition with high accuracy for widespread implementation. In this research paper, we introduce a novel human action recognition model named Context-Aware Memory Attention Network (CAMA-Net), which eliminates the need for optical flow extraction and 3D convolution which are computationally intensive. By removing these components, CAMA-Net achieves superior efficiency compared to many existing approaches in terms of computation efficiency. A pivotal component of CAMA-Net is the Context-Aware Memory Attention Module, an attention module that computes the relevance score between key-value pairs obtained from the 2D ResNet backbone. This process establishes correspondences between video frames. To validate our method, we conduct experiments on four well-known action recognition datasets: ActivityNet, Diving48, HMDB51 and UCF101. The experimental results convincingly demonstrate the effectiveness of our proposed model, surpassing the performance of existing 2D-CNN based baseline models. Article Highlights Recent human action recognition models are not yet ready for practical applications due to high computation needs. We propose a 2D CNN-based human action recognition method to reduce the computation load. The proposed method achieves competitive performance compared to most SOTA 2D CNN-based methods on public datasets.

Funder

RIE2020 Industry Alignment Fund – Industry Collaboration Projects

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FineTea: A Novel Fine-Grained Action Recognition Video Dataset for Tea Ceremony Actions;Journal of Imaging;2024-08-31

2. Application of Event Cameras and Neuromorphic Computing to VSLAM: A Survey;Biomimetics;2024-07-20

3. Implementing ViT Models for Traffic Sign Detection in Autonomous Driving Systems;2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST);2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3