Development of ionic liquid microemulsion for transdermal delivery of a chemotherapeutic agent

Author:

Sharma Harish,Kumar Sahu Gyanesh,Kaur Chanchal DeepORCID

Abstract

AbstractNowadays skin cancers have become a major area of concern because of the continuous exposure to sun rays (UV rays). Hence, the present work focused on the synthesis of an innovative 5-Fluorouracil (5-FU) microemulsion as a topical delivery system mainly used to treat various forms of skin cancer. The topical administration of most of the active compounds is impaired by limited skin permeability due to the presence of skin barriers. In this sequence, the microemulsion represents a cost-effective and convenient drug carrier system that successfully delivers the drug to and across the skin. Unfortunately, 5-FU reveals high toxicity and low tumor affinity became inefficient for patients with the risk of serious side effects. For decreasing of eluding some of its disadvantages we made it more effective by preparing its microemulsion with tween 80 (surfactant), isopropyl alcohol (co-surfactant), oleic acid (oil) in a four-component system. This study emphasized increasing the drug release by multiple times and a topical gel has been formulated and designs to elongate the drug release. All preparation of 5-FU microemulsion was characterized by physicochemical and drug release studies. The size of the 5-FU microemulsion was 550–600 nm confirmed by transmission electron microscopy (TEM) and Zetasizer. The clear microemulsion was prepared at pH 5–6. It shows viscosity in the limit of 13.52–18.23 Pa s. The outcome of the present work is satisfactory for skin cancer treatment.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3