Effect of SiO2 nanoparticle addition on growth of interfacial Ag3Sn intermetallic compound layers between lead-free solder and silver conductor

Author:

Hsiang Hsing-IORCID,Chen Chih-Cheng,Su Han-Yang

Abstract

AbstractThis study investigated the effects of silver powder modification on intermetallic compound (IMC) formation and silver leaching during soldering at high temperatures. Silica nanoparticles (NPs) were deposited onto a silver powder surface to inhibit silver leaching, which can lead to soldering joint failure during high-temperature soldering. The NPs were deposited through hydrolysis and a condensation reaction of tetraethyl orthosilicate (TEOS) based on the Stöber method. Fourier transform infrared spectroscopy and scanning electron microscopy were used to observe the microstructures of silver powders after the deposition of silica NPs with various TEOS concentrations and various deposition times. As the deposition time increased, the amount of silica NPs on the surface of the silver powder increased. The transmission electron microscopy results show that silica NPs were located at the IMC grain boundaries, which can hinder the dissolution of IMCs by lead-free solder melt along grain boundaries during soldering, retarding silver leaching. The growth kinetics and mechanism of IMCs during soldering were investigated. The results show that the growth of IMCs is mainly dominated by bulk diffusion. The activation energy for IMC growth increased and the growth rate decreased with increasing silica NP addition and deposition time.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3