Abstract
AbstractCompared to the dynamics of the predominantly geostrophic along-shelf current, our understanding of the cross-shelf dynamics in the Sea of Okhotsk is inadequate despite their importance in water mixing and nutrient entrainment. We investigated the cross-shelf overturning circulation along the East Sakhalin Current, which is a source of nutrients such as iron for the western North Pacific. Here, we reveal that the cross-shelf circulation during winter is characterised by a nearshore upwelling and a shelf-break downwelling under a downwelling-favourable monsoon wind, contrary to a classical Ekman overturning (EOT). This reverse EOT is driven by the internal water stress, which is caused by intensive vertical mixing and geostrophic vertical shear in the shelf-break front produced by riverine discharges from the far-eastern Eurasian Continent. The EOT blocks the Ekman onshore transport from the open ocean, thereby producing a deep mixed layer at the shelf break. Scaling analyses indicate the applicability of this mechanism to various other shelf-break fronts.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献