3D characterisation of hydrogen environmentally assisted cracking during static loading of AA7449-T7651

Author:

De Francisco UnaiORCID,Beckmann Felix,Moosmann Julian,Larrosa Nicolas O.,Peel Matthew J.

Abstract

AbstractIn this investigation, synchrotron X-ray microtomography was used to perform 3D in situ observations of crack initiation and growth during hydrogen environmentally assisted cracking (HEAC) in tensile samples of AA7449-T7651. Two smooth tensile samples with a 1 mm diameter gauge section were held at a fixed displacement ($$\approx 30$$ 30 % of yield stress) in warm, moist air ($$\approx 76\,^\circ $$ 76 C, 73% relative humidity). The samples were then imaged repeatedly using X-ray tomography until they fractured completely. The tomograms showing the nucleation and evolution of intergranular cracks were correlated with electron microscopy fractographs. This enabled the identification of crack initiation sites and the characterisation of the crack growth behaviour relative to the microstructure. The samples were found to fracture within an environmental exposure time of 240 min. Some cracks in both samples nucleated within an exposure time of 80 min (33–40% of the total lifetime). Many cracks were found to nucleate both internally and at the sample surface. However, only superficial cracks contributed to the final fracture surface as they grew faster owing to the direct environmental exposure and the larger crack opening. HEAC occurred prominently via brittle intergranular cracking, and cracks were found to slow down when approaching grain boundary triple junctions. Additionally, crack shielding from nearby cracks and the presence of coarse Al–Cu–Fe particles at the grain boundaries were also found to temporarily reduce the crack growth rates. After prolonged crack growth, the HEAC cracks displayed ductile striations and transgranular fracture, revealing a change in the crack growth mechanism at higher stress intensity factors.

Funder

engineering and physical sciences research council

calipsoplus

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Modeling and Simulation,Computational Mechanics

Reference48 articles.

1. Aluminum Association and others (2009) International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys. Teal Sheets, pp 1–28

2. Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press, Washington, DC

3. Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Sebastian Seung H (2017) Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33:2424–2426

4. ASTM International (2012) Standard practice for maintaining constant relative humidity by means of aqueous solutions, E104-02. ASTM International, West Conshohocken

5. Bhuiyan MS, Tada Y, Toda H, Hang S, Uesugi K, Takeuchi A, Sakaguchi N, Watanabe Y (2016) Influences of hydrogen on deformation and fracture behaviors of high Zn 7XXX aluminum alloys. Int J Fract 200:13–29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3