Fatigue behaviour of laser powder bed fusion (L-PBF) Ti–6Al–4V, Al–Si–Mg and stainless steels: a brief overview

Author:

Afroz L.ORCID,Das R.,Qian M.,Easton M.,Brandt M.

Abstract

AbstractFatigue and crack growth characteristics are essential cyclic properties of additively manufactured (AM) components for load-bearing applications, which are less reported in the literature than static properties. The fatigue behaviour of AM components is more complicated than those produced by conventional fabrication techniques (casting and forging) because of the multiplicity of different influencing factors like defect distribution, inhomogeneity of the microstructure and consequent anisotropy. Therefore, it is crucial to understand fatigue performance under different loading conditions to enhance AM application in aerospace, automotive, and other industries. The present work summarises the published literature for fatigue properties of popular metals (Ti–6Al–4V, Al–Si–Mg and stainless steels) produced by the laser powder-bed-fusion (L-PBF) process. Moreover, process parameters, post-processing treatments and microstructures of these alloys are discussed to evaluate the current state-of-the-art of fatigue and crack growth properties of L-PBF metals. The static properties of these alloys are also included to incorporate only those cases for which fatigue behaviour are discussed later in this review to make a correlation between the static and fatigue properties for these alloys. The effects of build orientation, microstructure, heat treatment, surface roughness and defects on fatigue strength and fatigue crack growth threshold are observed and critically analysed based on available literature. This study also highlights the common and contrary findings in the literature associated with various influential factors to comprehensively understand the cyclic loading behaviour of L-PBF produced metal alloys.

Funder

RMIT University

Royal Melbourne Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,Modeling and Simulation,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3