Toward Fatigue-Tolerant Design of Additively Manufactured Strut-Based Lattice Metamaterials

Author:

Apetre Nicoleta A.1,Michopoulos John G.1,Rodriguez Steven N.1,Iliopoulos Athanasios1,Steuben John C.1,Graber Benjamin D.1,Arcari Attilio2

Affiliation:

1. U.S. Naval Research Laboratory Computational Multiphysics Systems Laboratory, Materials Science and Technology Division, , Washington, DC 20375

2. U.S. Naval Research Laboratory Environmental and Material Compatibility Chemistry Division, , Washington, DC 20375

Abstract

Abstract The advent of additive manufacturing (AM) has enabled the prototyping of periodic and non-periodic metamaterials (a.k.a. lattice or cellular structures) that could be deployed in a variety of engineering applications where certain combinations of performance features are desirable. For example, these structures could be used in a variety of naval engineering applications where lightweight, large surface area, energy absorption, heat dissipation, and acoustic bandgap control are desirable. Furthermore, combining the multifunctional design optimization of these structures with progressive degradation due to cyclic loading could lead to fatigue-activated attritable systems with potentially tailorable performances not yet in reach by current conventional systems. Nevertheless, in order to deploy these complex geometry structures their multiphysics response has to be well understood and characterized. The objective of the current effort is to describe an initial approach for designing a uniaxial metamaterial specimen for fatigue testing as the first step toward the design of multi-axial fatigue test coupons. In order to compare bending- and stretching-dominated structures, two strut-based lattices made of Ti-6Al-4V alloy consisting of the octet and tetrakaidecahedron (or Kelvin) cells are examined. The specimens are designed to fail in the central area of the specimen where edge effects are minimized. Finite element results of the relevant structural mechanics are implemented and exercised to compare the performance of the eight relevant geometries and to evaluate the effect of relative density on fatigue life.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3