Abnormal neonatal sodium handling in skin precedes hypertension in the SAME rat

Author:

Mullins LindaORCID,Ivy Jessica,Ward Mairi,Tenstad Olav,Wiig Helge,Kitada Kento,Manning Jon,Rakova Natalia,Muller Dominik,Mullins John

Abstract

AbstractWe discovered high Na+ and water content in the skin of newborn Sprague–Dawley rats, which reduced ~ 2.5-fold by 7 days of age, indicating rapid changes in extracellular volume (ECV). Equivalent changes in ECV post birth were also observed in C57Bl/6 J mice, with a fourfold reduction over 7 days, to approximately adult levels. This established the generality of increased ECV at birth. We investigated early sodium and water handling in neonates from a second rat strain, Fischer, and an Hsd11b2-knockout rat modelling the syndrome of apparent mineralocorticoid excess (SAME). Despite Hsd11b2−/− animals exhibiting lower skin Na+ and water levels than controls at birth, they retained ~ 30% higher Na+ content in their pelts at the expense of K+ thereafter. Hsd11b2−/− neonates exhibited incipient hypokalaemia from 15 days of age and became increasingly polydipsic and polyuric from weaning. As with adults, they excreted a high proportion of ingested Na+ through the kidney, (56.15 ± 8.21% versus control 34.15 ± 8.23%; n = 4; P < 0.0001), suggesting that changes in nephron electrolyte transporters identified in adults, by RNA-seq analysis, occur by 4 weeks of age. Our data reveal that Na+ imbalance in the Hsd11b2−/− neonate leads to excess Na+ storage in skin and incipient hypokalaemia, which, together with increased, glucocorticoid-induced Na+ uptake in the kidney, then contribute to progressive, volume contracted, salt-sensitive hypertension. Skin Na+ plays an important role in the development of SAME but, equally, may play a key physiological role at birth, supporting post-natal growth, as an innate barrier to infection or as a rudimentary kidney.

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Clinical Biochemistry,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3