Influences of Elevated Nutrients and Water Temperature from Wastewater Effluent on River Ecosystem Metabolism

Author:

Zhang MengORCID,Chadwick Michael A.ORCID

Abstract

AbstractRiver ecosystem metabolism (REM) is a measure of ecological function which integrates gross primary production (GPP) and ecosystem respiration (ER). Urban rivers often receive effluents from wastewater treatment plants (WWTP) which frequently alter nutrient concentrations and modify temperature regimes of receiving water bodies. To investigate how variations in nutrients and water temperature affect REM, we applied the night-time slope modelling to estimate diurnal REM at sites above and below a wastewater outfall on the River Wandle, UK. Overall, estimated GPP (0–21.2 mgO2·L− 1·d− 1) and ER (5.5–10.1 mgO2·L− 1·d− 1) from our study sites were similar to those of urban impacted rivers in other countries. GPP values were similar between sites, but downstream ER values were significantly higher affected by the WWTP effluent. GPP/ER ratios were < 1 indicating heterotrophic conditions and the river as a carbon source during the study. We found that sites had similar activation energy associated with ER suggesting our work provides a useful reference for estimating temperature corrected metabolic processes for other urban rivers in the region. Furthermore, structural equation modelling revealed that nutrient supply, water temperature and light availability were the main factors driving REM. This research highlights the major environmental factors affecting REM, which helps to understand the response of river metabolism and river regulation of regional carbon cycle to future climate change and provide evidence to inform river restoration and future in-stream management.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3