On the Hamel Coefficients and the Boltzmann–Hamel Equations for the Rigid Body

Author:

Müller AndreasORCID

Abstract

AbstractThe Boltzmann–Hamel (BH) equations are central in the dynamics and control of nonholonomic systems described in terms of quasi-velocities. The rigid body is a classical example of such systems, and it is well-known that the BH-equations are the Newton–Euler (NE) equations when described in terms of rigid body twists as quasi-velocities. It is further known that the NE-equations are the Euler–Poincaré, respectively, the reduced Euler–Lagrange equations on SE(3) when using body-fixed or spatial representation of rigid body twists. The connection between these equations are the Hamel coefficients, which are immediately identified as the structure constants of SE(3). However, an explicit coordinate-free derivation has not been presented in the literature. In this paper the Hamel coefficients for the rigid body are derived in a coordinate-free way without resorting to local coordinates describing the rigid body motion. The three most relevant choices of quasi-velocities (body-fixed, spatial, and hybrid representation of rigid body twists) are considered. The corresponding BH-equations are derived explicitly for the rotating and free floating body. Further, the Hamel equations for nonholonomically constrained rigid bodies are discussed, and demonstrated for the inhomogenous ball rolling on a plane.

Funder

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Reference51 articles.

1. Ball, K.R., Zenkov, D.V.: Hamel’s formalism and variational integrators. In: Chang, D.E., et al. (eds.) Geometry, Mechanics, and Dynamics, Fields Institute Communications, vol. 7, pp. 477–506 (2015)

2. Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Nonholonomic dynamics. Notices AMS 52(3), 324–333 (2005)

3. Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. Int. J. 24, 187–222 (2009)

4. Boltzmann, L.: Über die Form der Lagrange’schen Gleichungen für nicht holonome generalisierte Coordinaten, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, No. 111, pp. 1603–1614 (1902). Published as F. Hasenöhrl (ed.): Wissenschaftliche Abhandlungen, by Ludwig Boltzmann, Friedrich Hasenöhrl, Cambridge University Press, 2012

5. Boltzmann, L.: Vorlesungen über die Prinzipe der Mechanik. Verlag von Johann Ambrosius Barth, Leipzig, II. Teil (1904)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3