Mathematical Framework for Breathing Chimera States

Author:

Omel’chenko O. E.ORCID

Abstract

AbstractAbout two decades ago it was discovered that systems of nonlocally coupled oscillators can exhibit unusual symmetry-breaking patterns composed of coherent and incoherent regions. Since then such patterns, called chimera states, have been the subject of intensive study but mostly in the stationary case when the coarse-grained system dynamics remains unchanged over time. Nonstationary coherence–incoherence patterns, in particular periodically breathing chimera states, were also reported, however not investigated systematically because of their complexity. In this paper we suggest a semi-analytic solution to the above problem providing a mathematical framework for the analysis of breathing chimera states in a ring of nonlocally coupled phase oscillators. Our approach relies on the consideration of an integro-differential equation describing the long-term coarse-grained dynamics of the oscillator system. For this equation we specify a class of solutions relevant to breathing chimera states. We derive a self-consistency equation for these solutions and carry out their stability analysis. We show that our approach correctly predicts macroscopic features of breathing chimera states. Moreover, we point out its potential application to other models which can be studied using the Ott–Antonsen reduction technique.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hopf bifurcations of twisted states in phase oscillators rings with nonpairwise higher-order interactions;Journal of Physics: Complexity;2024-06-01

2. Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators;Journal of Physics: Complexity;2024-03-01

3. Breathing cluster in complex neuron–astrocyte networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-11-01

4. Stable chimera states: A geometric singular perturbation approach;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-11-01

5. Self-induced-stochastic-resonance breathing chimeras;Physical Review E;2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3