Breathing cluster in complex neuron–astrocyte networks

Author:

Wang Ya1ORCID,Wang Liang1,Fan Huawei2ORCID,Ma Jun3ORCID,Cao Hui1ORCID,Wang Xingang1ORCID

Affiliation:

1. School of Physics and Information Technology, Shaanxi Normal University 1 , Xi’an 710062, China

2. School of Science, Xi’an University of Posts and Telecommunications 2 , Xi’an 710121, China

3. Department of Physics, Lanzhou University of Technology 3 , Lanzhou 730050, China

Abstract

Brain activities are featured by spatially distributed neural clusters of coherent firings and a spontaneous slow switching of the clusters between the coherent and incoherent states. Evidences from recent in vivo experiments suggest that astrocytes, a type of glial cell regarded previously as providing only structural and metabolic supports to neurons, participate actively in brain functions by regulating the neural firing activities, yet the underlying mechanism remains unknown. Here, introducing astrocyte as a reservoir of the glutamate released from the neuron synapses, we propose the model of the complex neuron–astrocyte network, and investigate the roles of astrocytes in regulating the cluster synchronization behaviors of networked chaotic neurons. It is found that a specific set of neurons on the network are synchronized and form a cluster, while the remaining neurons are kept as desynchronized. Moreover, during the course of network evolution, the cluster is switching between the synchrony and asynchrony states in an intermittent fashion, henceforth the phenomenon of “breathing cluster.” By the method of symmetry-based analysis, we conduct a theoretical investigation on the synchronizability of the cluster. It is revealed that the contents of the cluster are determined by the network symmetry, while the breathing of the cluster is attributed to the interplay between the neural network and the astrocyte. The phenomenon of breathing cluster is demonstrated in different network models, including networks with different sizes, nodal dynamics, and coupling functions. The findings shed light on the cellular mechanism of astrocytes in regulating neural activities and give insights into the state-switching of the neocortex.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3