Integrability Analysis of the Stretch–Twist–Fold Flow

Author:

Maciejewski Andrzej J.ORCID,Przybylska MariaORCID

Abstract

AbstractWe study the integrability of an eight-parameter family of three-dimensional spherically confined steady Stokes flows introduced by Bajer and Moffatt. This volume-preserving flow was constructed to model the stretch–twist–fold mechanism of the fast dynamo magnetohydrodynamical model. In particular we obtain a complete classification of cases when the system admits an additional Darboux polynomial of degree one. All but one such case are integrable, and first integrals are presented in the paper. The case when the system admits an additional Darboux polynomial of degree one but is not evidently integrable is investigated by methods of differential Galois theory. It is proved that the four-parameter family contained in this case is not integrable in the Jacobi sense, i.e. it does not admit a meromorphic first integral. Moreover, we investigate the integrability of other four-parameter $${\textit{STF}}$$STF systems using the same methods. We distinguish all the cases when the system satisfies necessary conditions for integrability obtained from an analysis of the differential Galois group of variational equations.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3