Abstract
AbstractWe study the integrability of an eight-parameter family of three-dimensional spherically confined steady Stokes flows introduced by Bajer and Moffatt. This volume-preserving flow was constructed to model the stretch–twist–fold mechanism of the fast dynamo magnetohydrodynamical model. In particular we obtain a complete classification of cases when the system admits an additional Darboux polynomial of degree one. All but one such case are integrable, and first integrals are presented in the paper. The case when the system admits an additional Darboux polynomial of degree one but is not evidently integrable is investigated by methods of differential Galois theory. It is proved that the four-parameter family contained in this case is not integrable in the Jacobi sense, i.e. it does not admit a meromorphic first integral. Moreover, we investigate the integrability of other four-parameter $${\textit{STF}}$$STF systems using the same methods. We distinguish all the cases when the system satisfies necessary conditions for integrability obtained from an analysis of the differential Galois group of variational equations.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Engineering,Modeling and Simulation
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献